CJK WG1 at Beijing

Development of Crash Dump Analysis Tool "Alicia"

April 15, 2005

Hideki Takahashi (UNIADEX, Ltd.)

Member of Development Infrastructure WG Japan OSS Promotion Forum

. Background of Alicia development

Dump Analysis for mainframe

Problem is resolved in most cases if crash dump was taken.

- Dump analysis is a critical factor for mission critical support.
- Most of necessary information is being saved in memory by operating system.
- Crash dump can be saved under any condition. (No failure for taking a dump.)
- Dump tool is easy to use and it has many useful functions.

Dump Analysis for Linux

Dump Analysis hasn't been useful for resolving problems.

- It's very difficult to find a dump analysis report for Linux systems.
- There's a possibility to lose memory data at system fault due to failure on dumping.
- Efficiency of dump analysis is bad because dump tool itself is poor.

Approach to improve Linux dump analysis

3. Strong Point of Alicia

- Å
- 1. Dump Analyzer can have many advantage in operations. (Analysis time can be reduced.)
- 2. Dump Analyzer can ask non kernel experts for dump editing*. (Customers can use Alicia.)
- 3. Dump Analyzer can verify actual data at kernel study and can learn expert's know-how.
- 4. Dump Analyzer can use functions of existing analysis tools seamlessly. Alicia is wrapping the existing tools and it is not built from the scratch for getting merits of each tool.

*Dump editing: To visualize necessary information by reading necessary data from memory dump.

4. Positioning and main components of Alicia

Development of integrated dump analysis tool "Alicia"

Know-how accumulation:

- -LDAS is an interpreter and has a good visibility and it can be accumulated on a know-how D/B.
- -Modification is easy and new command can be made quickly by just modifying existing scripts during dump analysis.

Perl Scripts (LDAS) (Linux Dump Analysis Scripts)

- -New analysis commands will be developed by using the Wrapper Module (LDAI).
- -Dump for similar problem is analyzed quickly by making scripts needed for the dump analysis and reusing them.

Wrapper Module (LDAI) (Linux Dump Analysis Interface)

- -Interfaces to existing dump analysis tools (crash, lcrash) will be developed.
- -Access methods to kernel structure will be implemented by using functions of existing dump analysis tools. (called Alicia API)

Alicia itself is written by Perl

6. Functionalities of Alicia in dump analysis

Alicia has 4 major functions. - Integrated dump analysis tool -

- 1. Wrapper function: User can use existing crash/lcrash commands in addition to Alicia commands.
- 2. Interactive Perl function: User can analyze dump interactively and can have command results as a variable and can use the variable for another command.
- 3. Scripting function: User can execute LDAS (Perl script) interactively and can use LDAS in another LDAS.
- 4. Alicia APIS: User can use Alicia's unique functions that are common to crash/lcrash.

Copyright(C) 2005, Development Infrastructure WG, Japan OSS Promotion Forum

7. Operations of Alicia

There are 3 patterns in Alicia operation.

- 1. Interactive Standard Command Analysis :
- 2. Interactive Alicia Unique Command Analysis :
- 3. Alicia scripts (LDAS) Analysis :

Copyright (C) 2005, Development Infrastructure WG, Japan OSS Promotion Forum

8. Demonstration of Alicia

Alicia (Advanced LInux Crash-dump Interactive Analyzer) Demonstration Profile

Environment that the dump was taken:

OS: Miracle Linux V3.0(kernel 2.4.21-9.35AX) Hardware: Unisys ES7000 (CPU: Intel Xeon 2.8GHz × 32, Memory: 4GB) Situation: LKCD dump was taken while the aim7 benchmark tool is running.

Environment that dump is analyzed today's demo:

Miracle Linux V3.0(kernel 2.4.21-9.35AX)
IBM (CPU: Intel(R) Pentium(R) M processor 1300MHz,
Memory: 512MB
v5.8.0 with Term::ReadKey, Term::ReadLine
3.8-5

Alicia: 1.0.0

9. Demonstration Scenario (1)

(1) Linked list – Case of VMA(Virtual Memory Area)

Get necessary information from each VMA using the chain pointer.


```
alicia> list_task_vma 'f2894000';
```

task f2894000			
comm multita	ask		
pid 30239			
mm 0xf27c520	00		
mm.pgd Ox	f6879ac0		
mm.mm_coui	nt.counter 1		
start of vm_ne	ext list fro	m 0xf15cc584	
address	vm_start	vm_end	vm_flags
0xf15cc584	0x8048000	0x8058000	0x1875
0xf15cc5c8	0x8058000	0x8059000	0x101873
0xf15cc188	0x8059000	0x8105000	0x100073
0xf15cc210	0xb7463000	0xb746e000	0x75
0xf15cc2dc	0xb746e000	0xb746f000	0x100073
0xf15cc320	0xb747f000	0xb7480000	0x100073
:			
0xf15cce8c	0xb75e7000	0xb75eb000	0x100073
0xf15ccf9c	0xb75eb000	0xb7600000	0x875
0xf15cc71c	0xb7600000	0xb7601000	0x100873
0xf15cc980	0xbfff8000	0xc0000000	0x100177
end of vm_area	a_struct.vm_	next list	

10. Demonstration Scenario (1)

(2) Unwritten log data at panic.

Retrieves dirty buffer where data hasn't been written into /var/log/messages just before panic by using Alicia APIs, LDASs and crash commands.

- (1) Make a hash for the specified path and get the address of structure "dentry".
- (2) Get the address of structure "inode".
- (3) Get the address of dirty buffer linked to the structure "inode".
- (4) Get the address of structure "pagae", if it is dirty buffer.
- (5) Get the page address from the structure "page".
- (6) Dump the image of page.

Copyright (C) 2005, Development Infrastructure WG, Japan OSS Promotion Forum

alicia> retrieve('/var/log/messages');

f f081000 :	69686320	7920646c	676e756f	6f207265	child younger o
f f081010:	7265646c	74634f0a	20392020	303a3130	Ider.Oct 9 01:0
f f081020 :	30333a39	6e6c6d20	6b203178	656e7265	9:30 mlnx1 kerne
f f081030:	69203a6c	2074696e	20202020	20202020	l: init
f f081040 :	43205320	42463430	20303832	20202020	S C04FB280
f f081050 :	20202034	20312020	20202020	20203020	4 1 0
f f 081060 :	34332020	20202020	32202020	20202020	34 2
f f081070:	28202020	4c544f4e	4f0a2942	20207463	(NOTLB).Oct
f f081080:	31302039	3a39303a	6d203033	31786e6c	9 01:09:30 mlnx1
f f081090:	72656b20	3a6c656e	6c614320	7254206c	kernel: Call Tr
f f0810a0:	3a656361	5b202020	3130633c	37623932	ace: [<c0129b7< td=""></c0129b7<>
		:			
		:			

TIPS !

You can make an LDAS script easily by using Alicia's history function which saves your key-in images during your dump analysis.

You also can use the tab complement function for easy input.

11. Demonstration Scenario (1)

(3) CPU resource.

Get information about which processes have a lot of CPU time. We will get the CPU time of each process from the task_struct and add the CPU time to original "ps" command display and then sort them.

alicia> ps_cpu();

PID	PPID	CPU	TASK	ST	%MEM	VSZ	RSS	Cputime COMM
2090	1	0	f42dc000	RU	0.0	3044	1672	22.79 oprofiled
28657	28233	25	ef2da000	UN	0.0	2328	1340	11.82 multitask
30210	28233	21	e9ff2000	RU	0.0	3352	1404	10.68 multitask
1271	1264	5	f47f6000	IN	0.2	49384	6932	10.58 ocssd.bin
29229	28233	6	f0ec4000	RU	0.0	3336	1388	10.11 multitask
28480	28233	23	e9bd0000	UN	0.0	2328	1340	9.78 multitask
29582	28233	3	ebcc6000	UN	0.0	2328	1340	9.78 multitask
29004	28233	24	e8fc4000	UN	0.0	2328	1340	9.51 multitask
28686	28233	0	f2776000	UN	0.0	2328	1340	9.42 multitask
30188	28233	3	e9f68000	RU	0.1	3308	2320	9.30 multitask
30051	28233	3	f0bda000	UN	0.0	2328	1340	9.06 multitask
28660	28233	24	e9d3a000	UN	0.0	2328	1340	<mark>8.94</mark> multitask
29730	28233	16	f2d0e000	UN	0.0	2328	1340	<mark>8.91</mark> multitask
28524	28233	11	ea5fa000	UN	0.0	2328	1340	<mark>8.85</mark> multitask

TIPS ! Alicia can invoke another LDAS from an LDAS.

12. Effect provided by Alicia

Example of dump analysis acceleration by Alicia

 $Copyright(C)\ 2005,\ Development\ Infrastructure\ WG,\ Japan\ OSS\ Promotion\ Forum$

13. Result Summary for 2004

Result summary of Alicia development in FY2004

Implemented as an integrated dump analysis tool for accumulating and sharing the dump analysis know-how.

- · Development of Alicia main structure and crash interface
- Infrastructure for know-how accumulation and sharing
- · Script (LDAS) samples for dump analysis procedures

Completed. Now available. Included in Alicia 1.0.0

Dump analysis speed is actually accelerated by Alicia

- · Execution time without using LDAS was measured
- · Execution time with making and executing LDAS was measured
- · Execution time with using existing LDAS was measured
- · Speed-up was evaluated from the point of view of operability and serviceability
- · Sample LDASs like "Linked List Search", "Display of unwritten log data at panic", etc. were made and executed for measurement.

Synergy effects by co-working approach in development

- · Development speed and quality were brushed up by cooperation between 3 companies
- · Development scope were expanded and operability/reliability were improved

14. Activities in 2005 and future

To be a standard dump analysis tool initiated from Japan

Development of Icrash interface

Icrash interface must be made for completing the integrated dump analysis tool development. Icrash interface will be made in first half of 2005.

Popularization of Alicia

- Key factor is to make useful LDASs for quick dump analysis.
- · TIPs for making LDAS will be collected and released.
- · LDAS database (administration & search functions) should be provided.
- · Dump analysis reports by using LDAS will be opened to the public.
- · Comparison with Unix dump tools (mdb/adb/crash) and feedback of them.

Development of a default dump edit script

·LDAS for editing minimum set of memory information that is commonly required for most cases of Linux problems should be developed and released.

Release of dump related information including "how to"

•Release information about how to take a dump, etc. to appeal the importance of dump analysis as first step to our goals.

15. Information about Alicia

Alicia 1.0.0 release date: March 22, 2005 (Plan)
Copyright: UNIADEX
License: GPL (General Public License)
Open Source: Source code will be opened on SourceForge.net provided by OSDN Open Source Development Network)

Co-working company: NTT DATA MIRACLE LINUX

URLs for downloading Alicia

"Alicia" project

http://sourceforge.net/projects/alicia/

"Alicia" homepage

http://alicia.sourceforge

The development of this program is partly supported by IPA (Information-technology Promotion Agency), Japan

Appendix: CJK cooperation about Alicia

One of ideas about the joint work with CJK.

The following items are not heavy work if you have engineers interested in crash dump analysis.

Make LDASs and share them between CJK.

Use Alicia and feed back your comments for improvement of Alicia.

Help from China and Korea would be appreciated!